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Application of Generalized Likelihood Uncertainty Estimation (GLUE) at different
temporal scales to reduce the uncertainty level in modelled river flows
Ragab Ragab a, Alexandra Kaelina, Muhammad Afzalb and Ioanna Panageac

aWater Resources Department, UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK; bSchool of Earth and Ocean Sciences, Cardiff
University, Cardiff, UK; cDivision of Soil and Water Management, Katholieke Universiteit Leuven, Leuven, Belgium

ABSTRACT
In this study, the distributed catchment-scale model, DiCaSM, was applied on five catchments across the
UK. Given its importance, river flow was selected to study the uncertainty in streamflow prediction using
the Generalized Likelihood Uncertainty Estimation (GLUE) methodology at different timescales (daily,
monthly, seasonal and annual). The uncertainty analysis showed that the observed river flows were
within the predicted bounds/envelope of 5% and 95% percentiles. These predicted river flow bounds
contained most of the observed river flows, as expressed by the high containment ratio, CR. In addition to
CR, other uncertainty indices – bandwidth B, relative bandwidth RB, degrees of asymmetry S and T,
deviation amplitude D, relative deviation amplitude RD and the R factor – also indicated that the
predicted river flows have acceptable uncertainty levels. The results show lower uncertainty in predicted
river flows when increasing the timescale from daily to monthly to seasonal, with the lowest uncertainty
associated with annual flows.
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1 Introduction

The results of hydrological models are judged by their relia-
bility, accuracy and level of uncertainty. There are a number
of factors that affect the model results. They include the
model structure, the accuracy in describing the hydrological
processes, the parameter values and the inherent errors in
input and observation data. These factors, if not closely
representing the natural system, could lead to imprecision
and uncertainty in model results (Loucks and Van Beek
2017). One of the most applied methods for assessing the
uncertainty is the Generalized Likelihood Uncertainty
Estimation (GLUE), proposed by Beven and Binley (1992).
This methodology has been used in numerous hydrological
studies (e.g. Xue et al. 2018, Teweldebrhan et al. 2018, Kan
et al. 2019, Xie et al. 2019, Tegegne et al. 2019).

The GLUE methodology assumes that there is no optimal
parameter set that could describe the catchment hydrology. As
stated by Beven and Binley (1992), “there may be many sets of
parameter values that are equally likely as simulator of the
hydrological system.” The GLUE methodology states that the
performance of simulation is not decided by one specific
parameter, but by the combination of parameters in
a parameter set. The methodology recognises the possible
equifinality and the multiple behavioural (Beven and Binley
1992) of the different parameter sets and assesses the like-
lihood of a set being acceptable when compared with the
observed datasets.

Although several studies have applied the GLUE methodol-
ogy to assess model performance, little work has been carried

to study model performance over different timescales (daily,
monthly, seasonal and annual), and over different catchments
of different sizes, land-use characteristics, geographical loca-
tion and soil physical characteristics.

This work is part of a large project, DRY,1 aimed at inves-
tigating the impact of climate and land use on water resources,
with special emphasis on the drought aspect. The aim of this
paper is to assess the level of uncertainty in predicted river
flows at different timescales, since its quantification at different
timescales will be valuable. The project involves national and
local stakeholders, each of which has different interest. For
example, the National Farmers Union (UK) has an interest in
the seasonal water requirement for the farming community,
which is more associated with seasonal predictions, while local
councils have an interest in water availability for the new urban
developments, which is more associated with annual predic-
tion of water resources availability.

2 DiCaSM, the data and the studied catchments

2.1 The DiCaSM model

This study applied the Distributed Catchment Scale Model,
DiCaSM (Ragab and Bromley 2010, Ragab et al. 2010). The
model is physically based and considers commonly known
hydrological processes, such as rainfall interception, infiltra-
tion, evapotranspiration, surface runoff to streams, recharge to
groundwater, water uptake by plants, soil moisture dynamics
and streamflow. The model has been developed to estimate the
catchment water balance components and to account for the
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impact of changes in climate and land use on the catchment
water resources, including streamflow and recharge to the
groundwater. The model adopts a distributed approach with
a variable spatial scale (default is a 1 km × 1 km grid square). It
requires daily input data of rainfall, temperature, wind speed,
vapour pressure and radiation. The model runs on a daily
timestep; however, if hourly rainfall data is available, the
model can run on an hourly timestep. The model also
addresses the heterogeneity of input parameters of soil and
land cover within the grid square using three different algo-
rithms (Ragab and Bromley 2010). The model has been suc-
cessfully applied on a catchment in Brazil (Montenegro and
Ragab 2010, 2012), Italy (D’Agostino et al. 2010) and Cyprus
(Ragab et al. 2010).

2.2 Components of DiCaSM

The key model components of DiCaSM are rainfall inter-
ception, potential evapotranspiration, the catchment water
balance, infiltration, surface runoff/overland flow and
groundwater recharge. The processes include rainfall inter-
ception by grass surface (calculated according to Aston
1979), by crops (according to Von Hoyningen-Huene
1981) and by trees (according to Gash et al. 1995).
Potential evapotranspiration of mixed vegetation is calcu-
lated according to Raupach (1995), whereas the surface
runoff calculation is based on either excess saturation or
excess filtration. The infiltration is calculated according to
the equations of either Philip (1957) or Green and Ampt
(Green 1911). The runoff is routed between the low points
of each grid square along the prevailing slope using
a digital terrain model (DTM). The model calculates the
soil water balance of the root zone based on the four-layer
model of Ragab et al. (1997) and calculates overland and
channel flow according to Yu and Jeng (1997). Further
details about the model are given in Ragab et al. (2010)
and Ragab and Bromley (2010).

2.3 Input data for DiCaSM

The DiCaSM model was applied on five selected catch-
ments located in different parts of the UK (Fig. 1), as
part of a project to study the climate change impact on
water resources. The data required to run the model are:
climate data, elevation map data, land cover map data, soil
cover map data, soil hydraulic properties and land cover
properties. The climate data required are temperature,
wind speed, vapour pressure and radiation, as well as the
rainfall. The climatic data were obtained from the Climate,
Hydrology and Ecology research Support System (CHESS)
(Robinson et al. 2015, Tanguy et al. 2016). The catchment
boundary and gauging station location data were collected
from the UK Centre for Ecology and Hydrology (Morris
et al. 1990b, Morris and Flavin 1994) and the National
River Flow Archive (NRFA2) provided data for the daily
river flow for the studied catchments. The river flow data

were collected from the UK Centre for Ecology and
Hydrology: “Digital Rivers 50 km GB”‘ Web Map Service3

and the land cover data were obtained from the “Land
Cover Map 2007 (25 m raster, GB)” Web Map Service
(Morton et al. 2011).

2.4 Key model parameters and model simulations

The observed streamflow data were obtained from the UK
Environment Agency (one of the stakeholders in the project).
The river flow in the DiCaSM model depends on six para-
meters: the percentage of surface runoff routed to stream, an
exponent function describing the peak flow, the catchment
storage/time lag coefficient, the stream storage/time lag coef-
ficient, the baseflow index and the streambed infiltration//
leakage. In addition, there are other parameters that affect
the calibration, such as the soil hydraulic parameters. For the
model calibration, the model was run with a range of the
above-mentioned model parameters using first the best per-
iods, i.e. those available with the best quality data (no gaps),
for the model simulations. The selected time period was
chosen using a simple iteration algorithm for optimization,
in which each of the above-selected parameters was assigned
a range described by a minimum and a maximum value. Each
range was divided into several steps and the number of total
iterations is the product of multiplication of the steps of the
six key parameters. The number of iterations for each para-
meter was assigned according to the parameter sensitivity,
i.e. a higher number was assigned to parameters that showed
more impact on the streamflow. The model calculates the
Nash-Sutcliffe efficiency, NSE, for each iteration. The model
optimisation process helps in finding a good set of para-
meters that produces a good model efficiency factor. In
addition to the NSE, other indices such as lnNSE (using
natural logarithmic values of streamflow) and R2 were also
used to compare the simulated and the observed data.

Generally, the model calibration was carried out over
a shorter period and then the model was validated for several
years to the entire available record to ensure the consistency
and coherence of the parameter ranges. For distributed models
such as DiCaSM (grid square area of 1 km2 and using 52 years
of data), this process helps in identifying the range of each
parameter to reduce the number of iterations required by the
GLUE methodology. Conceptual non-distributed models such
as rainfall–runoff models have less computing power require-
ment and can be run with a large number of iterations within
significantly a shorter time period than distributed models.

2.5 Assessing model efficiency/performance

To determine the model efficiency/goodness of fit, the mod-
elled and observed river flow data were compared using
a number of indices, including the NSE criterion (Nash and
Sutcliffe 1970). The NSE is the most widely used factor to
assess the performance of hydrological models (Gupta et al.
2009). An NSE of 1 indicates a perfect match.

2http://nrfa.ceh.ac.uk/[Accessed 2014].
3https://data.gov.uk/dataset/3c7ea82e-83e0-45a3-9a3f-8ba653b3211b/ceh-digital-river-network-of-great-britain-web-map-service [Accessed 2014].
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NSE ¼ 1�
Pn

i¼1 ðOi � SiÞ2Pn
i¼1 ðOi � �OÞ2

(1)

where Oi and Si refer to the observed and simulated flow data,
respectively, Ō is the mean of the observed data and n is the
number of observations. The calibration procedure consisted
of adjusting the model parameters to achieve the best model fit,
with the latter assessed using the NSE values. Krause et al.
(2005) indicated that extreme values in a time series can result
in a low NSE coefficient because hydrological models tend to
underestimate river flow during peak flows. For this reason,
they suggested calculating the NSE coefficient with natural
logarithmic values of the flow, as used in Afzal et al. (2015):

ln NSE ¼ 1�
Pn

i¼1 lnOi � ln Sið Þ2Pn
i¼1 lnOi � ln �Oð Þ2

(2)

In addition, the model performance was also evaluated using
the statistical indicators, namely the coefficient of determina-
tion, R2 as follows:

R2 ¼ 1
N

Pn
i¼1 ðOi � �O½ �ð�S� �O

σOi � σSi

� �
(3)

where N is the total number of observations, �yo is the average
measured (observed) value, Si is the average simulated value,
σOi is the observed data standard deviation and σSi is the

Figure 1. Overview map of the UK showing the case study catchments.
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simulated data standard deviation. The values of this index can
range from 1 to 0, with one indicating perfect fit.

3 Generalized Likelihood Uncertainty Estimation
(GLUE) methodology

Although there are a number of ways to evaluate the uncertainty,
the GLUE methodology has the advantage of using only a small
number of assumptions and of being simple in its application. It
is based on the estimation of the weights, or probabilities, asso-
ciated with different parameter sets. The set that produces the
least errors (good fit) is usually associated with the highest like-
lihood function, and the highest probability. In the GLUEmeth-
odology, the likelihood uncertainty level is calculated as:

L
θi
Y

� �
¼ 1� σ2i

σ2obs

� �
(4)

where L is the likelihood measure of the ith model simulation
madewith the parameter set θi related to themeasured streamflow
Y, and is a function of the ratio of errors variance, σ2i for the ith
model simulation (representing the variance of the error between
the model prediction and the observed streamflow) and the var-
iance of the observed streamflow, σ2obs. A distribution function is
obtained by rescaling of the likelihoodmeasures such that the sum
of all the likelihood values would equal 1. The cumulative dis-
tribution and the prediction quantiles (95% and 5% confidence
levels) are used to assess the uncertainty level.

The application and results of the GLUE approach vary,
based on the threshold assigned for acceptable goodness-of-fit
indicator and the likelihood measure (i.e. minimum NSE value)
chosen to evaluate whether the selected set of parameters is
behavioural or not (Beven and Binley 1992, Beven 2006, Viola
et al. 2009). Different likelihoodmeasures could be used, such as
the NSE or the sum of squared errors (Beven and Binley 1992,
Freer et al. 1996). Users could define the threshold of efficiency
criteria according to their model preference and for each indi-
vidual catchment. The GLUE methodology rejects non-
behavioural parameter sets when the likelihood measure
selected takes lower values than the designated threshold. The
behavioural sets are retained together with the likelihood values,
which are used for the weight calculation. The cumulative like-
lihood weighted distribution of predictions can be used to
estimate the quantiles for the predictions at any timestep.

To apply the GLUE methodology, one needs to define the
threshold value of the likelihood measure that differentiates
between behavioural and non-behavioural models.

3.1 Uncertainty indicators

In this study, the uncertainty analysis was carried out on cali-
bration and validation sub-periods of the dataset. Different sets
of model parameters were used to generate the modelled river
flow time series and the NSE criterion was chosen as a likelihood
measure indicator. Based on previous studies (Jackson et al.
2016), the NSE threshold was set to 0.5 (50%), which implies
that all parameter sets with NSE below 0.5 are considered non-
behavioural and not included in the GLUE analysis. The

uncertainty levels are evaluated with a number of indicators:
CR, B, RB, S, T, R factor, D, and RD as reported by Xiong et al.
(2009) and defined in the Appendix. The CR parameter is the
containment ratio, which is the percentage of observed river
flows that are enveloped by the prediction bounds of the 5% and
95% confidence levels, i.e. the Q5%–Q95% likelihood-weighted
quantiles. The CR is probably the most basic requirement for
the prediction bounds. A high CR for the estimated prediction
bounds is always the aim.

The indices S and T are used for assessing the geometric
structure/average asymmetry degree of the band formed by the
lower and upper prediction bounds. An average asymmetry
degree index value of S < 0.5 indicates that, on average, the
river hydrograph lies within the prediction bounds. In the
completely symmetrical case, the value of S is zero. Desirable
bounds should have values of 0 < S < 0.5 and 0 < T < 1.

The bandwidth of the prediction bounds Q5%–Q95%, B,
should be as narrow as possible, so as to capture the most
important information about the modelling uncertainty. The
average relative bandwidth, RB is used to facilitate the com-
parison of results of the prediction bounds on different catch-
ments, it is necessary to eliminate the impact of discharge
magnitude on the bandwidth of the prediction bounds.

The average deviation amplitude, D, quantifies the discre-
pancy between the trajectory consisting of the middle points of
the prediction bounds and the observed discharge hydrograph.
The average relative deviation amplitude, RD, eliminates the
impact of discharge magnitude on the value of the index of
average deviation amplitude.

The uncertainty parameter R factor is the average thickness
of the band divided by the standard deviation of the observed
data. A value of less than 1 is a desirable measure for the
R factor (Singh et al. 2014). More details about the indicators
are given in the Appendix.

3.2 GLUE methodology application

The DiCaSM model provides, for each parameter set combi-
nation, a single value of simulated streamflow. Performance
evaluation is carried out, including rejection of some para-
meter sets as non-behavioural (NSE < 0.5). This is followed by
calculation of the likelihoods of behavioural parameter sets
and rescaling to produce a cumulative sum of 1. This is carried
out by ranking in ascending order all the simulated streamflow
data (only of those behavioural parameter sets) and the corre-
sponding cumulated efficiencies (NSE). Each cumulated effi-
ciency value, divided by the maximum value, results in a value
ranging between 0 and 1. These values are referred to as the
“probability weighted in efficiency” (Viola et al. 2009,
D’Agostino et al. 2010). A cumulative distribution function
(cdf) of the simulated streamflow is also constructed, relating
each value of the simulated flow to the corresponding value of
the probability weighted in efficiency.

The model uncertainty analysis is carried out over daily,
monthly, seasonal and annual timescales. This helps to assess
the uncertainty level of different timescales. To calculate the
uncertainty level for the simulated streamflow, the following
steps are followed (see also Fig. A1 in the Appendix):

HYDROLOGICAL SCIENCES JOURNAL 1859



Step 1. Select a likelihood measure; the NSE was selected as
it is widely used.
Step 2. Assign parameter ranges (minimum, maximum,
number of steps).
Step 3. Assign a threshold value for the likelihood measure
to differentiate between behavioural and non-behavioural
parameter sets; a value of NSE = 0.5 (Jackson et al. 2016)
was selected.
Step 4. Simulate flow with several parameter sets and record
the likelihood value of each parameter set.
Step 5. Retain the behavioural parameter sets together with
the likelihood values which are considered the simulation
weights.
Step 6. Rescale the weights obtained in Step 6 so that the
sum equals one, to produce a cumulative distribution.
Step 7. From the cumulative likelihood distribution func-
tion of streamflow prediction, derive the 5% and 95%
quantiles of uncertainty in the streamflow prediction at
any timestep.

The procedure followed here is in accordance with Beven and
Binley (1992) and similar to the procedure followed by
a number of scientists, such as Freer et al. (1996), Blasone
et al. (2008), Freni et al. (2008), Xiong and O’Connor (2008),
Viola et al. (2009), Xiong et al. (2009), Jin et al. (2010), Beskow
et al. (2011), Chen et al. (2013), Khoi and Thom (2015),
Jackson et al. (2016) and Teweldebrhan et al. (2018).

There are several ways of presenting the results of the
uncertainty analysis, as given below.

● Statistical data about the behavioural and non-behavioural
simulations: for example, the percentage of behavioural
simulations. If the model is run 1000 times and achieves
100 behavioural simulations, then the percentage of beha-
vioural simulations = 100/1000 = 10%. Table 1 shows that
this ratio varies from >50% to >90% for the studied
catchments.

● Different indicators (Section 3.1). In the description of the
results, a combination of indicators can give valuable infor-
mation about the uncertainty results. For example, a low
average bandwidth combined with high CR denotes that
the uncertainty bounds are low (low average bandwidth)
and that a large part of the observed values is included in
these bounds (high CR). This would show that the model
and the parameter sets are reliable and could be used for
further analysis and decision making.

● Simulated time series of the observed, calibration and
validation periods together with the envelopes of percen-
tiles 5%–95% (Freer et al. 1996, Beven and Freer 2001,

Jackson et al. 2016). Average volumes are plotted against
their rescaled likelihoods, which results in a plot of varia-
tion interval of the average volume. By projecting the
probability weighted in efficiency values of 0.05 and 0.95
onto the volume curve, the upper and lower confidence
bands can be identified. The mean values of the observed
volume, plotted as a vertical line, should lie within the
confidence region of the model. In order to compare the
behavioural time series with the observed volume,
a cumulative distribution function (cdf) can be plotted for
all behavioural time series.

4 Results and discussion

4.1 Model river flow simulations for uncertainty analysis

To reduce the number of simulations, the sensitivity of each
parameter for each catchment was tested by running the model
for a short time period, e.g. 2 years. This provided more insight
into the range of parameters and number of iteration steps that
could be considered in order to get the best results (e.g. to get
iterations with an NSE between 50% and 100%). The benefit of
the sensitivity analysis prior to application of the GLUE was to
reduce the number of iterations, which led to a reasonable num-
ber of parameter sets selected for the five catchments (Table 1).

For all the selected time periods, the threshold for GLUE was
set at NSE = 50%. This means that behavioural simulations must
have an NSE value equal to or above 50%. All simulations with
NSE below 50% were discarded from the GLUE analysis. The
range of parameters and the number of iterations used in the
study for all studied catchments are shown in Table 2. Some
parameters were sampled over a very broad range, while others
were sampled over a narrow range (as the model proved the
streamflow data were less sensitive to those parameters).

4.2 Model river flow calibration and validation

The five study catchments were calibrated and validated using
the observed naturalized river flows for different periods from
1961 to 2012. Detailed goodness-of-fit indices as model per-
formance indicators for the calibration and validation periods
of the five studied catchments are shown in Table 3.

An example of calibration for the Ebbw catchment is shown
in Fig. 2, which shows a good agreement between the observed
simulated flows. The NSE for this period is 91%. Overall, the
model performed well for both the rainy and dry events and
responded according to the soil hydrological status, i.e. for the
soil moisture deficit period, a small rainfall event did not
generate a significant increase in streamflow and for a heavy
rainfall event when the soil was wet, especially in winter
months, the model generated streamflow. For all catchments,
in the model calibration stages, the NSE was, on average,
around 89% and the maximum percentage error did not
exceed 1% (Table 3). The model also performed very well for
the well-known 1970 s drought events. Generally, the overall
model performance for the whole period (1961–2012) for all
catchments was extremely good, with an NSE, on average. of
around 85% and a maximum error not exceeding 5%.

Table 1. Number of iterations and ranges of NSE for monthly percentiles.

Catchment
Total no. of
iterations

No. of iterations with
monthly NSE > 0.50

Range of
monthly
NSE

Range of
monthly NSE

> 0.50

Eden 60 60 0.50–0.85 0.50–0.85
Frome 490 396 −0.25–0.93 0.50–0.93
Ebbw 108 103 0.27–0.95 0.51–0.95
Pang 648 342 −0.92–0.91 0.50–0.91
Don 336 225 −0.35–0.89 0.50–0.89

1860 R. RAGAB ET AL.



4.3 Model uncertainty analysis

Based on the simulated river flows of the five catchments, for
the calibration and validation periods, the envelope of 5% and
95% likelihood-weighted quantiles (the envelope of all beha-
vioural models, i.e. NSE >50%) was plotted against the
observed time series. Tables 4–7 show the uncertainty indica-
tor values for daily, monthly, seasonal and annual river flows,
respectively. An example of monthly river flows of the Ebbw
catchment is shown in Fig. 3, which shows the envelope of the
5% and 95% likelihood-weighted quantiles for the calibration
period 2000–2004 (blue) and the validation period 1961–2012
(brown), and the observed river flow (solid line). For most of
the time, the observed discharge is contained within the calcu-
lated uncertainty bounds, and the predictions bracketed the

observations, given that, for the Ebbw catchment, the calibra-
tion had an NSE value of 91% and the validation NSE of 87%,
as shown in Table 3.

The number of observations contained within the 5% and
95% GLUE uncertainty bounds, expressed as CR, ranged from
72% to 84%. Such high values of CR mean that the model
captured the observed flow quite well, as more observed values
are included in the envelope, showing that those sets of para-
meters used can be considered acceptable to be used for future
projections, such as climate change scenarios. Similar results
with good CR values were also obtained for monthly flows of
the other catchments, as shown in Table 5.

The uncertainty level could differ according to the time-
scale. Figure 4 shows the seasonal river flow for the Don
catchment as an example. The results reveal that the model
performed well over different seasons, including summer. The
envelope of the 5% and 95% likelihood-weighted quantiles is
shown for the calibration and validation periods. For most of
the time, the observed discharge is contained within the calcu-
lated uncertainty bounds, i.e. the predictions bracketed the
observations to a great extent (CR = 76%), given that the
calibration NSE value was 91% and the validation NSE value
was 87% for the Don catchment, as shown in Table 3. Similar
results of seasonal flows for other catchments were obtained,
and values are shown in Table 6.

Figure 5 shows the simulated annual flows and the envelope
of 5% and 95% likelihood-weighted quantiles compared against
the observed annual time series for the Frome catchment as an
example. In Fig. 5, the envelope of the 5% and 95% likelihood-
weighted quantiles are given for the calibration (2001–2012) and

Table 2. Key model parameter ranges and number of iterations.

Model parameters

Base percentage of flow routed
to stream

Exponent function of flow routed
to stream

Catchment storage/
time lag

Stream storage/time
lag Baseflow factor

Catchment Range Iterations Range Iterations Range Iterations Range Iterations Range Iterations

Frome 9–90 10 0.02–0.04 7 45 1 15 1 0.2–0.8 7
Pang 0.2–1.8 9 0 to 0.004 3 0.1–1 8 0.015 1 1.75 10−8–3.3 × 10−7 3
Ebbw 10–90 9 0.02–0.4 2 2 1 20 1 2.2 × 10−9–2.2 × 10−7 6
Eden 40–95 4 1.0 × 10−5 1 315 1 15–55 3 0.14–0.75 5
Don 10–90 8 0–0.3 6 143 1 18 1 0.02–0.95 7

Table 3. Model performance for the calibration and validation stages of the five catchments studied.

Catchment Period NSE lnNSE R2 Square root of R2
Modelled flow

(m3 s−1)
Observed flow

(m3 s−1) % Error

Eden 2012† 0.90 0.95 0.89 0.94 5.03 5.04 –0.19
1971–1980 0.79 0.89 0.79 0.89 3.60 3.54 1.69
1971–2012 0.79 0.90 0.80 0.89 4.11 4.13 –0.48

Ebbw 2000–2003† 0.91 0.88 0.92 0.96 7.19 7.23 –0.55
1971–1980 0.87 0.82 0.88 0.94 6.70 6.53 2.56
1961–2012 0.87 0.82 0.88 0.93 6.98 7.21 –3.17

Don 2011–2012† 0.92 0.86 0.91 0.95 5.41 5.32 1.81
2001–2012 0.87 0.73 0.87 0.93 4.86 4.73 2.61
1971–1980 0.82 0.66 0.83 0.91 4.68 4.90 – 4.63
1966–2012 0.83 0.73 0.84 0.91 5.06 5.08 –0.60

Frome 2001–2012† 0.86 0.83 0.86 0.93 1.79 1.78 0.94
1971–1980 0.80 0.78 0.81 0.90 1.56 1.48 4.93
1962–2012 0.82 0.80 0.83 0.91 1.71 1.74 –2.25

Pang 2001–2003† 0.92 0.89 0.94 0.97 0.79 0.81 –2.14
2000–2012 0.90 0.83 0.90 0.95 0.66 0.64 2.96
1971–1980 0.78 0.79 0.78 0.88 0.62 0.61 1.76
1971–2012 0.81 0.80 0.83 0.91 0.66 0.64 3.47

†calibration period.

Figure 2. Ebbw River catchment – model calibration for the period 2000–2003.
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the validation period (1971–2000); the black line represents the
observed flow. All the time the observed discharge is contained
within the calculated uncertainty bounds, the predictions
bracketed the observations, where CR ranged from 90% to
100%. In most of the studied catchments the annual CR was
above 80, and the lowest was 73%. The higher values of CRmean
that the model captures the observed flow quite well as more
observed values are included in the envelope.

Figure 6 shows the “probability weighted in efficiency”
based on the methodology given by Viola et al. (2009),
D’Agostino et al. (2010), Beskow et al. (2011) and Hoang
et al. (2018). The solid (red) vertical line represents the average
value of the measured river flow for the simulated period. It
should be noted that this value falls within the confidence
region of the model for the Don and Ebbw catchments as
examples (Fig. 6). Other catchments showed similar results.

To compare the behavioural time series with the observed
volume, the cdf is plotted for all behavioural time series. Figure 7
shows, as an example, the cumulative distribution probability of
the Don and Eden catchments for the period 1962–2012. It is
shown in Fig. 7 that the observed streamflow data fall within the
range of the number of simulated values obtained from the
iterations.

Table 4. Results of daily GLUE prediction bounds for all the studied catchments (See the Appendix for description of the parameters).

Daily prediction bounds

Catchment CR B RB S T D RD R factor Period

Eden 61.70 2.29 0.74 0.50 0.98 0.88 0.31 0.72 1975–1976
61.97 2.82 0.82 0.42 0.89 0.97 0.36 0.71 1976–1977
62.61 2.51 0.87 0.46 0.94 0.96 0.38 0.88 1971–1980
69.69 2.94 0.84 0.39 0.86 1.06 0.32 0.87 1981–1990
67.78 2.91 0.87 0.40 0.87 1.05 0.35 0.90 1991–2000
63.43 2.99 0.80 0.46 0.93 1.15 0.34 0.82 2001–2012
65.76 2.85 0.84 0.43 0.90 1.06 0.35 0.86 1971–2012

Ebbw 75.83 4.54 0.83 0.40 0.87 1.50 0.29 0.67 1971–1980
81.22 5.25 0.77 0.35 0.82 1.74 0.21 0.61 1981–1990
85.60 5.34 0.82 0.30 0.76 1.64 0.21 0.57 1991–2000
83.87 4.96 0.83 0.33 0.79 1.57 0.23 0.59 2001–2010
79.87 4.97 0.81 0.36 0.82 1.63 0.24 0.62 1961–2012

Don 55.49 4.17 0.83 0.56 1.05 1.76 0.42 0.68 2000–2012
57.35 3.88 0.74 0.61 1.10 1.67 0.36 0.68 1971–1980
58.38 4.24 0.79 0.55 1.04 1.82 0.39 0.70 1981–1990
59.51 4.16 0.78 0.53 1.02 1.72 0.38 0.64 1991–2000
57.31 4.10 0.79 0.60 1.10 1.76 0.39 0.68 1967–2012

Frome 47.50 1.23 0.93 0.88 1.41 0.60 0.49 0.50 1971–1980
48.60 1.37 0.96 0.86 1.40 0.63 0.49 0.52 1981–1990
48.15 1.38 0.88 0.93 1.48 0.71 0.47 0.49 1991–2000
48.48 1.34 0.93 0.85 1.38 0.64 0.48 0.49 1971–2012

Pang 35.40 0.22 0.37 1.02 1.57 0.16 0.25 0.51 2000–2012
38.18 0.22 0.37 0.99 1.54 0.15 0.24 0.60 1993–1999
36.37 0.22 0.37 1.01 1.56 0.15 0.25 0.53 1993–2012

Figure 3. Model output uncertainty boundaries (5th and 95th percentiles) when performing the GLUE analysis on model calibration (2000–2004) and validation
(1961–2012) periods for the Ebbw catchment river flow (monthly values).

Table 5. Results of monthly GLUE prediction bounds for all the studied
catchments.

Monthly prediction bounds

Catchment CR B RB S T D RD R factor Period

Eden 70.83 4.72 0.58 0.38 0.85 1.37 0.20 0.75 1975–1976
75.00 5.23 0.62 0.33 0.81 1.48 0.24 0.70 1976–1977
70.00 5.09 0.68 0.38 0.85 1.62 0.28 0.93 1971–1980
71.67 5.63 0.61 0.34 0.80 1.77 0.21 0.95 1981–1990
68.33 5.40 0.63 0.38 0.85 1.89 0.25 0.87 1991–2000
66.67 5.57 0.59 0.42 0.90 2.13 0.25 0.87 2001–2012
69.05 5.43 0.63 0.38 0.85 1.87 0.25 0.89 1971–2012

Ebbw 65.83 8.39 0.80 0.53 1.02 3.34 0.34 0.65 1971–1980
75.83 10.11 0.84 0.41 0.88 3.86 0.24 0.64 1981–1990
73.33 10.17 0.82 0.37 0.84 3.75 0.26 0.64 1991–2000
84.17 9.32 0.84 0.34 0.81 3.11 0.28 0.66 2001–2010
72.44 9.27 0.78 0.42 0.90 3.51 0.27 0.65 1961–2012

Don 68.59 7.76 0.70 0.39 0.86 2.83 0.29 0.79 2000–2012
72.50 7.28 0.62 0.38 0.85 2.54 0.23 0.84 1971–1980
68.33 7.99 0.67 0.39 0.86 2.83 0.28 0.83 1981–1990
75.00 7.91 0.68 0.35 0.82 2.62 0.26 0.73 1991–2000
70.47 7.70 0.66 0.38 0.85 2.76 0.27 0.82 1967–2012

Frome 46.67 2.18 0.74 0.66 1.15 1.20 0.37 0.60 1971–1980
50.83 2.36 0.76 0.57 1.07 1.21 0.34 0.60 1981–1990
50.83 2.36 0.68 0.68 1.19 1.40 0.33 0.53 1991–2000
51.19 2.33 0.73 0.59 1.08 1.21 0.33 0.58 1971–2012

Pang 45.51 0.67 0.43 0.69 1.19 0.38 0.25 0.61 2000–2012
39.29 0.65 0.44 0.69 1.19 0.37 0.25 0.72 1993–1999
43.33 0.66 0.44 0.69 1.19 0.38 0.25 0.64 1993–2012

1862 R. RAGAB ET AL.



4.4 Statistic indices

The uncertainty indicators were calculated for daily (Table 4),
monthly (Table 5), seasonal (Table 6) and annual (Table 7)
river flows for different periods. Table 4 shows the uncertainty
indicators for daily river flows. The containment ratio CR
ranged from 62% to 71%, for the Eden catchment, 76% to
86% for the Ebbw catchment, 56% to 60% for the Don catch-
ment, 48% to 50% for the Frome catchment and 35% to 38%
for the Pang catchment. The CR values differ from one period
to another, as the validation and calibration goodness of fit are
also different for different periods. However, for the full period
of record (1961–2012), the CR values were 66%, 80%, 57%,
49% and 36% for the Eden, Ebbw, Don, Frome, and Pang
catchments, respectively.

The asymmetry degree expressed by S and T shows S value
ranges of 0.39–0.50, 0.30–0.40, 0.53–0.61, 0.75–0.93 and 0.99–-
1.02 for the Eden, Ebbw, Don, Frome, and Pang catchments,
respectively, with S for the total period of 0.43, 0.36, 0.6, 0.85
and 1.01, respectively. The S value was within the recom-
mended range 0.0 < S < 0.5 for the Eden and Ebbw catchments.
The T value was in the ranges 0.86–0.98, 0.76–0.87, 1.02–1.10,
1.26–1.48 and 1.54–1.57 for the Eden, Ebbw, Don, Frome, and

Figure 4. Model output uncertainty boundaries (5th and 95th percentiles) when performing the GLUE analysis on model calibration (2001–2012) and validation
(1967–2012) periods for the Don catchment river flow (seasonal values).

Table 6. Results of seasonal GLUE prediction bounds for all the studied
catchments.

Seasonal prediction bounds

Catchment CR B RB S T D RD R factor Period

Eden 87.50 3.64 0.41 0.29 0.73 0.67 0.10 0.61 1975–1976
75.00 4.19 0.40 0.32 0.79 1.23 0.14 0.71 1976–1977
70.00 3.77 0.49 0.37 0.84 1.25 0.19 0.84 1971–1980
80.00 4.12 0.43 0.35 0.82 1.37 0.15 0.95 1981–1990
60.00 3.95 0.45 0.44 0.92 1.68 0.19 0.82 1991–2000
65.96 4.00 0.41 0.43 0.92 1.67 0.17 0.95 2001–2012
68.86 3.96 0.44 0.40 0.88 1.50 0.18 0.88 1971–2012

Ebbw 57.50 6.73 0.62 0.52 1.01 2.85 0.29 0.67 1971–1980
52.50 7.50 0.59 0.53 1.00 3.32 0.19 0.63 1981–1990
80.00 7.52 0.57 0.38 0.86 2.87 0.19 0.61 1991–2000
71.79 7.27 0.58 0.32 0.77 2.29 0.19 0.70 2001–2010
63.77 7.04 0.56 0.45 0.92 2.85 0.21 0.64 1961–2012

Don 72.55 6.44 0.59 0.36 0.82 2.30 0.23 0.92 2000–2012
82.50 6.24 0.52 0.36 0.82 2.16 0.18 0.89 1971–1980
72.50 6.58 0.56 0.37 0.85 2.36 0.23 0.87 1981–1990
77.50 6.56 0.56 0.35 0.83 2.32 0.21 0.80 1991–2000
75.96 6.43 0.56 0.36 0.83 2.29 0.21 0.90 1967–2012

Frome 52.50 1.90 0.66 0.55 1.04 0.97 0.27 0.65 1971–1980
57.50 2.10 0.63 0.47 0.93 0.94 0.24 0.71 1981–1990
50.00 2.08 0.56 0.54 1.03 1.15 0.24 0.61 1991–2000
56.29 2.05 0.61 0.48 0.96 0.95 0.23 0.67 1971–2012

Pang 52.94 0.67 0.44 0.55 1.04 0.33 0.22 0.64 2000–2012
48.15 0.66 0.46 0.60 1.10 0.35 0.23 0.78 1993–1999
50.63 0.66 0.44 0.57 1.06 0.34 0.22 0.68 1993–2012

Table 7. Results of annual GLUE prediction bounds for all the studied catchments.

Annual prediction bounds

Catchment CR B RB S T D RD R factor Period

Eden 50.00 20.32 0.19 0.52 0.94 9.02 0.09 3.20 1975–1976
100.00 23.46 0.19 0.09 0.49 2.12 0.02 1.28 1976–1977
90.00 22.42 0.23 0.25 0.71 5.01 0.05 0.89 1971–1980
100.00 24.11 0.20 0.23 0.68 5.65 0.04 1.14 1981–1990
90.00 23.64 0.20 0.27 0.74 6.11 0.05 1.12 1991–2000
91.67 24.13 0.19 0.24 0.69 5.48 0.04 0.89 2001–2012
92.86 23.60 0.20 0.25 0.71 5.56 0.05 0.93 1971–2012

Ebbw 60.00 34.62 0.19 0.45 0.92 17.05 0.11 0.71 1971–1980
40.00 30.73 0.13 0.72 1.24 21.50 0.08 0.80 1981–1990
70.00 32.29 0.13 0.33 0.78 10.38 0.04 0.71 1991–2000
90.00 39.24 0.19 0.28 0.75 10.37 0.05 0.74 2001–2010
65.38 36.10 0.17 0.44 0.91 15.15 0.07 0.73 1961–2012

Don 76.92 44.27 0.30 0.25 0.70 10.26 0.08 0.75 2000–2012
80.00 41.60 0.28 0.35 0.84 14.43 0.11 1.00 1971–1980
100.00 44.18 0.28 0.19 0.65 8.04 0.05 1.35 1981–1990
80.00 43.91 0.28 0.25 0.69 10.34 0.08 0.96 1991–2000
84.78 43.20 0.28 0.26 0.72 10.76 0.08 1.02 1967–2012

Frome 100.00 13.99 0.29 0.21 0.67 2.97 0.06 1.09 1971–1980
100.00 14.34 0.26 0.17 0.62 2.44 0.05 1.57 1981–1990
90.00 14.42 0.25 0.25 0.71 3.74 0.06 0.92 1991–2000
97.62 14.55 0.27 0.19 0.65 2.88 0.05 0.99 1971–2012

Pang 76.92 7.22 0.37 0.32 0.80 2.28 0.12 0.81 2000–2012
100.00 8.74 0.43 0.27 0.76 2.37 0.12 1.38 1993–1999
85.00 7.75 0.39 0.30 0.78 2.31 0.12 0.97 1993–2012
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Pang catchments, respectively, with T for the whole period of
0.90, 0.82, 1.10, 1.38 and 1.56, respectively. Similar to S, the
T value was within the recommended range 0 < T < 1 in the
Eden and Ebbw catchments. One should note here that larger
values of S or T represent more asymmetrical prediction
bounds around the observed flow hydrograph.

The R factor value was in the ranges 0.72–0.90, 0.55–0.67,
0.64–0.70, 0.46–0.52 and 0.51–0.6 for the Eden, Ebbw, Don,

Frome, and Pang catchments, respectively, with R for the
whole period of 0.86, 0.62, 0.68, 0.49, and 0.53, respectively.
A value of R less than 1.0 is desirable (Singh et al. 2014) and the
values obtained for the five catchments largely meet this
requirement.

The average bandwidth B of the prediction bounds Q0.95

–Q0.05 and the relative average bandwidth RB are also shown in
Table 4. The relative bandwidth values for the whole period

Figure 5. Model output uncertainty boundaries (5th and 95th percentiles) when performing the GLUE analysis on model calibration (2001–2012) and validation
(1971–2000) periods for the Frome catchment using annual observed and simulated data.

Figure 6. Uncertainty band of the DiCaSM parameters for the period 1962–2012 for the Don and Ebbw catchments. The solid (red) vertical line represents the average
value of the measured river flow for the simulated period.

Figure 7. Cumulative probability plot of flows for the Don and Ebbw catchments (1962–2012).
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(1961–2012) were 0.84, 0.81, 0.79, 0.93, and 0.37 for the Eden,
Ebbw, Don, Frome and Pang catchments, respectively.

Table 4 shows the average deviation amplitude of the mid-
dle points of the predicted bounds from the observed flow
hydrograph, D and the relative average RD. The relative aver-
age deviation amplitude values for the whole record were 0.35,
0.24, 0.39, 0.48 and 0.25 for the Eden, Ebbw, Don, Frome and
Pang catchments, respectively.

Both RB and RD values indicate a small relative bandwidth
and deviation amplitude relative to observed flow values,
respectively. The S, T, B, RB, D and RD values are comparable
with the results of Xiong et al. (2009), who found that higher
CR values are associated with lower values of S and T and
higher values of B, RB andD. They stated that it is very difficult
to achieve a desirable level of the CR, T and B, e.g. a high CR
associated with a narrow bandwidth, B, and a low average
asymmetry S and T with respect to the observed flows.

The monthly, seasonal and annual flow uncertainty indica-
tors, as presented in Tables 5–7, respectively, show much
improved values of CR, S, T, RB, RD and R. Generally, the
annual flows show better results of low uncertainty than sea-
sonal; seasonal results are better than monthly and monthly
better than daily. This is explained in the next section.

4.5 Temporal scale impact on the uncertainty levels

4.5.1 Containment ratio (CR)
The CR values (Tables 4–7) were plotted to illustrate the differ-
ence in CR when calculated for daily, monthly, seasonal and
annual river flow/volume. Figure 8 shows an example of four
catchments. From Tables 4–7, in most of the catchments, the
CR value was improving (getting larger} when the temporal
scale increased from daily to monthly to seasonal to annual. In
most cases, the highest CR was associated with annual flows and
the lowest with daily flows. The CR annual value increased to
almost 100% from lower values at daily, monthly or seasonal CR
for the Eden, Don, Frome and Pang catchments.

4.5.2 Asymmetry degree, S and T
Ideally the asymmetry indicators such as S and T should be in
the ranges 0 < S < 0.5 and 0 < T < 1 to have a good symmetrical
condition; i.e. low uncertainty occurs within those ranges.
Figure 9 shows the asymmetry indicator S for four catchments
and at four timescales. Generally, the S values are reasonable
and show a better symmetry when considering annual flows
(0 < S < 0.5), followed by seasonal, then monthly, then daily
flows. Clear examples are the cases of the Eden, Don, Frome
and Pang catchments. Similar results obtained for the
T indicator for the four catchments and at four timescales
are shown in Fig. 10. Reasonable results were obtained show-
ing a better symmetry when considering annual flows
(0 < T < 1), followed by seasonal, then monthly, then daily.
Good examples are the cases of the Eden, Don, Frome and
Pang catchments.

4.5.3 Average relative bandwidth, RB
Relative bandwidth (RB), if narrow, indicates lower uncer-
tainty. Tables 4–7 show both the bandwidth (B) and the RB.
Figure 11 shows an example of RB for the four study
catchments. The RB values look reasonable and indicate
a relatively narrower bandwidth when using annual flows,
followed by monthly, then seasonal, then daily flows. Figure
11 shows the significant difference between daily and annual
RB values.

4.5.4 Average relative deviation amplitude, RD
The relative deviation amplitude (RD), if smaller, indicates
lower uncertainty. Tables 4–7 show the deviation amplitude
(D) and the RD. Figure 12 shows an example of RD of the
four study catchments. The RD values look reasonable and
indicate a relatively small deviation when using annual
flows, followed by monthly, then seasonal, then daily
flows. Figure 12 shows the significant difference between
daily and annual RB values.

Figure 8. Containment ratio (CR) at different timescales for the Frome, Eden, Don and Ebbw catchments.
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4.5.5 The R factor
The R factor gives the average thickness of the band Q0.95–Q0.05

relative to the standard deviation of the observed data, where
a value of 1 is ideal. Tables 4–7 show reasonable values for the
R factor. An example of R factor for the four study catchments is
shown in Fig. 13; it can be seen that there are fewer variations
between daily, monthly and seasonal flow, with the annual flows
sometimes slightly better.

In contrast to the daily, monthly and seasonal uncertainty
indicators, such as CR, annual river flows had lower uncertainty

levels. For example, the annual CR for some periodswas as high as
100% for some catchments. Moreover, in comparison to the
monthly and seasonal flows, the uncertainty levels of annual
river flows of both the Frome and Pang catchments were reduced
significantly, with the CR of the Pang ranging from 77% to 100%
and that for the Frome from 90% to 100%. Other uncertainty
indicators such as S and T were also been improved for all five
catchments. Generally, this indicates that the uncertainty level is
reduced when considering annual rather than monthly or seaso-
nal river flows.
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Figure 9. Asymmetric degree S for the Frome, Eden, Don and Ebbw catchments.
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Figure 10. Asymmetric degree T for the Frome, Eden, Don and Ebbw catchments.
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5 Conclusion

The uncertainty indicators of the five catchments revealed the
following results:

● The average containment ratio (CR) value that gives the
percentage of observed river flows enveloped by confidence
levels Q5%–Q95% likelihood-weighted quantiles for daily,
monthly, seasonal and annual flow values, was 60%, 64%,
66% and 84%, respectively (a higher value is desirable).

● The average relative bandwidth (RB) values for daily,
monthly, seasonal and annual flows were 0.77, 0.67,
0.52 and 0.25, respectively (a narrow value is desirable).

● The average asymmetry indicator (S) values for daily,
monthly, seasonal and annual flows were 0.59, 0.46,
0.43 and 0.30, respectively, and the average T values
were 0.09. 0.94, 0.91 and 0.76, respectively (desirable
bounds should have values of 0 < S < 0.5 and
0 < T < 1).

● The average relative deviation amplitude (RD) for daily,
monthly, seasonal and annual flows were 0.34, 0.27, 0.20
and 0.07, respectively (a smaller value is desirable).

● The average R factor values for daily, monthly, seasonal
and annual flows were 0.66, 0.73, 0.76 and 1.08, respec-
tively (a value closer to 1 is desirable).

Figure 11. Average relative band width, RB, for the Frome, Eden, Don and Ebbw catchments.
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Figure 12. Average relative deviation, RD, for the Frome, Eden, Don and Ebbw catchments.
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Generally, the different uncertainty indicators (CR, S, T,
B, RB, D, RD and R factor) all gave desirable values
indicating a reasonable low uncertainty level in model
prediction.

The GLUE methodology showed lower uncertainty in
predicted river flows when increasing the timescale from
daily to monthly to seasonal river flows with the lowest
uncertainty associated with annual flows.

The results showed that DiCaSM provided a small
level of uncertainty in the predicted river flows and sub-
sequently, a higher confidence level in the results. The
results presented in this paper, for different timescales,
could be useful for various stakeholders, water resources
planners and decision makers.
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Appendix

A.1.1 Containment ratio, CR

The containment ratio, is the percentage of the number of observed flows
enveloped by its prediction bounds to the total number of the observed
flows. This index is commonly used for measuring the goodness of the
prediction bounds. The larger the value of CR, the greater is the propor-
tion of the observed flow points that fall within the interval defined by the
prediction bounds. A high CR for the estimated prediction bounds is
always the aim.

A.1.2 Average band width, B

The average bandwidth, B, of the prediction bounds for the whole simu-
lated period is calculated as

B ¼ 1
N

XN

i¼1
bi with bi ¼ Qu

i � Ql
i (A1)

where bi is the bandwidth of the prediction bounds for the flow at time i.
For a given confidence level. Qu

i and Ql
i represent the upper and lower

prediction bounds of flows, respectively and are associated with
a particular confidence level (5% and 95% selected for this study).
Narrow bandwidth is considered better than wide band width.

A.1.3 Average relative bandwidth, RB

In order to compare the results of the prediction bounds of different
catchments, it is necessary to eliminate the impact of flows magnitude on
the bandwidth of the prediction bounds. This can be done by using
a dimensionless index, the average relative bandwidth of the prediction
calculated as:

RB ¼ 1
N

XN

i¼1
rbi; rbi ¼ bi=Qi (A2)

where rbi is the ratio of the bandwidth of the prediction bounds at time
i to the corresponding observed discharge Qi.

A.1.4 Asymmetry degree indices, S and T

There are two indices for assessing the average asymmetry degree of the
prediction bounds with respect to the observed flows. These two indices
are referred to as S and T. The index S is calculated as:

S ¼ 1
N

XN

i¼1
si (A3a)

Si ¼ hi � 0:5j j (A3b)

hi ¼ Qu
i � Qi

Qu
i � Ql

i

¼ Qu
i � Qi

bi
(A3c)

where si represents the asymmetry degree of the prediction bounds
with respect to the corresponding observed discharge, Qi. si is
a function of hi, which is the ratio of the difference between the
upper limit, Qu

i and the observed discharge, Qi to the actual band-
width, bi. An average asymmetry value of S < 0.5 would mean that, on
average, the river flows lie within the prediction bounds. In a 100%
completely symmetrical case the value of S would be zero. The larger
the value of S, the greater asymmetrical the prediction bounds are
around the observed flows.

The second index for assessing the average asymmetry degree of the
prediction bounds withrespect to the observed flows, is referred to as T,
calculated is defined as:

T ¼ 1
N

XN

i¼1
ti (A4a)

ti ¼
Qu

i � QiÞ3 þ ðQl
i � Qi

� �3
½Qu

i � Ql
i�3

 !1=3

(A4b)

The variations of the ti values depend on the location of the observed
flows with respect to the prediction bounds. It is expected that 0 ≤ t < 1,
with t = 0 when the value of Qi is equal to the lower and upper prediction
bounds. The larger the value of T, the more asymmetrical the prediction
bounds are around the observed flows.

A.1.5 Average deviation amplitude

In some cases, where the estimated prediction bounds are asymmetric
with respect to the observed flows, the middle point of the prediction
boundsQm deviates from the corresponding observed flowQ. To quantify
the actual discrepancy between the trajectory consisting of the middle
points the prediction bounds and the observed flows, another index, D,
the average deviation amplitude of the prediction bounds from the
observed flow is calculated as:

D ¼ 1
N

XN

i¼1
di (A5a)

di ¼ Qm
i � Qi

�� �� ¼ 1
2
ðQu

i � Ql
iÞ � Qi

����
���� (A5b)

A.1.6 Average relative deviation amplitude

To eliminate the impact of flow magnitude on the value of the D index,
the dimensionless relative average deviation amplitude RD, would be
a better option. It is calculated as:

RD ¼ 1
N

XN

i¼1
rdi (A6a)

rdi ¼
1
2 ðQu

i � Ql
iÞ � Qi

�� ��
Qi

¼ Qm
i

Qi
� 1

����
���� (A6b)

where rdi is the relative deviation of the mid-point of the prediction
bounds Qm

i from the corresponding observed flow, Qi at time i.

A.1.7 The R factor

The R factor is calculated as:

R ¼ d�x
σx

(A7a)

d�x ¼ 1
n

Xn

i¼1
ðxu � xlÞ (A7b)

where σx is the standard deviation of the measured streamflow x; d�x
is the average distance between the upper and lower boundaries (Q0.95

and Q0.05); and n is the number of observations.
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Figure A1. Flowchart for the uncertainty analysis procedure.
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