Modernising a pressurised pipeline
Supply system for high value Agriculture in Asia

PRESENTED BY Rob Rendell
ICID Adelaide
Oct 5 2020
Australia has five general types of irrigation systems

- Northern areas – large on farm storage’s with cotton surface irrigated (laser graded)
- Traditional canal – large canal (300,000ha) systems with cotton/rice/dairy pastures surface irrigated (laser graded) – mix of Rubicon control and semi automation
- Pressurised pumped piped supply (500-10,000ha) systems supplying horticulture (grapes – wine/table/dried, fruit trees, almonds, vegetables
- Direct river diversions by private pumping (100ha – 10,000ha) for mainly almonds/cotton/grapes – use sprinklers/drip
- Groundwater by private pumping (100-500ha) for every type of farm systems
Canal versus Pipes
Sprinkler/Drip versus Surface

It all depends but there are principles

- **Soils drive crop type** – high value crops require sprinkler/drip – thus need pipe supply

- **Large flows are better in canals/rivers** - <600mm pipes are efficient

- **Topography** – flat areas using surface irrigation (rice/cotton/cereals/maize) use canals – avoid pumping but if steep then use natural head for pipes.

- **Energy/water/food nexus** – weigh up the long term impact of energy use relative to water efficiency and food production

Water Efficiency Improvement in Drought Affected Provinces (WEIDAP) Project

Impact
To improve climate resilience, environmental sustainability and agricultural water productivity in drought-affected provinces

Outcome
Climate resilient and modernized irrigation systems providing flexible and affordable services to beneficiary farmers in the five participating provinces

Outputs
1. Climate resilient irrigation management services adopted
2. Flexible and modernized irrigation systems developed
3. Efficient on-farm water management practices adopted
Current Irrigation Practices
Modernizing Irrigation Systems in Drought Affected Provinces of Viet Nam

Water Efficiency Improvement in Drought Affected Provinces Project (WEIDAP)
Australian Riverland / Sunraysia study tour

Use of a pressurised pumped piped supply system - Requires a Paradigm shift

- Focus on Level of Service – LoS
 - Water on demand – almost
 - Pressure
 - Direct connection
 - Don’t filter
- Pipe is a network – canal is a tree – canal engineers don’t understand this
- Variable speed pumps and SCADA not Header tanks
- Capacity is driven by
 - Crop/demand – average peak month (we spend too much time on accuracy)
 - Hrs/day – daytime or nighttime - 24 hours cause use cheap automation on farm
 - Minimum Flow rate – around 5l/sec for up to 5 ha regardless of area cause 50mm systems on farm are efficient cost
 - LoS – almost water on demand – flexibility factor or extra capacity – natural queuing happens – not a lot to make a difference!
- Operators need to take their hands of the system – give up control
- Water Users Group – needed for most canal systems to manage water in tertiary systems – there is no tertiary pipes in a network!!
- “Epanet” design – free computer program – two extremes – no flow and full flow
Figure 10: Layout of gravity piped system and command area for Du Du Tan Thanh (Source: PRIMEX, 2017)
Thank you – questions?