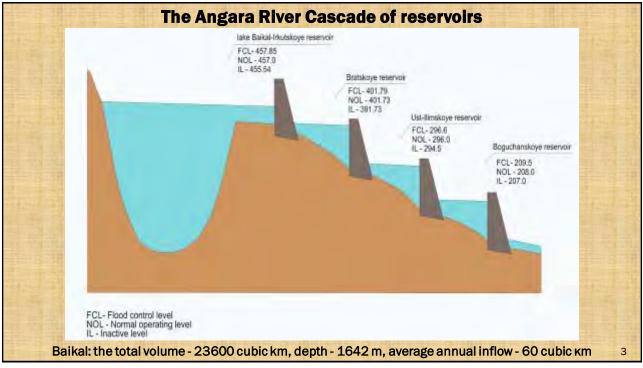
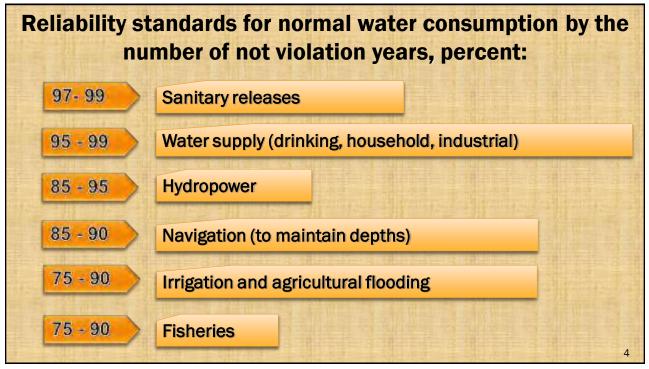


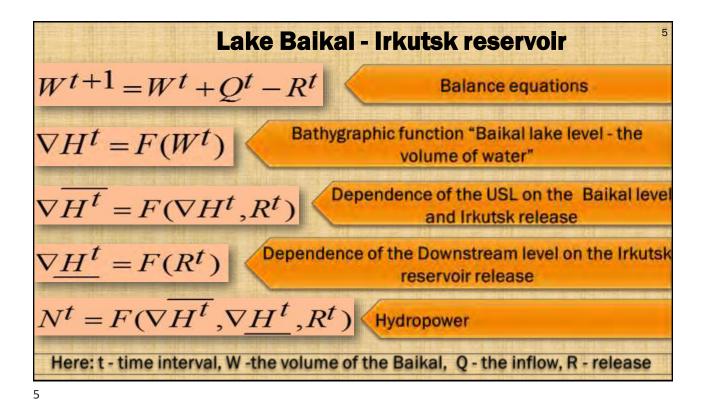
Contents

1. Assessment of climate change in recent years based on the implementation of water resource calculations (WRC) according to Dispatch schedules (DS).

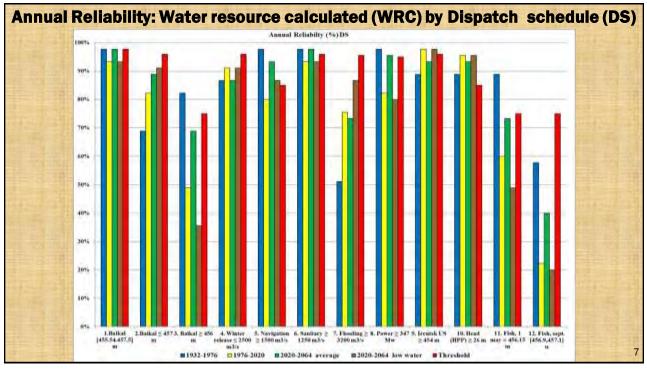
2. Development of a mathematical model, algorithm and Computational technology for

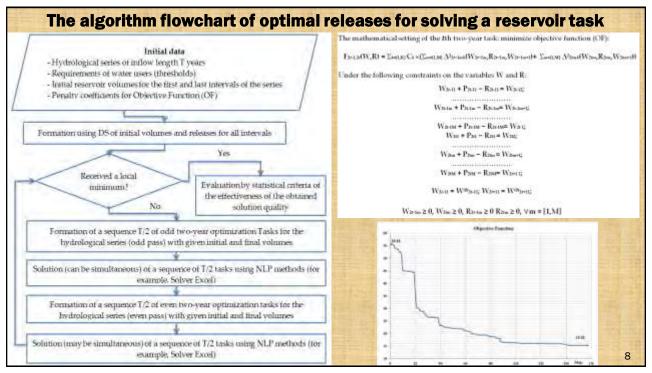

performing water resource calculations based on optimization methods

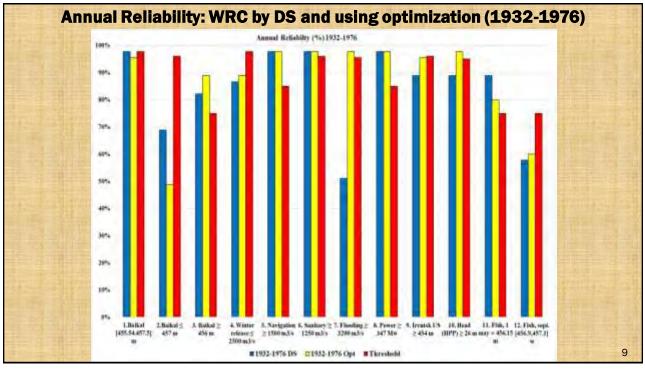

3. Comparison of the release rule reliability using DS and optimization methods.

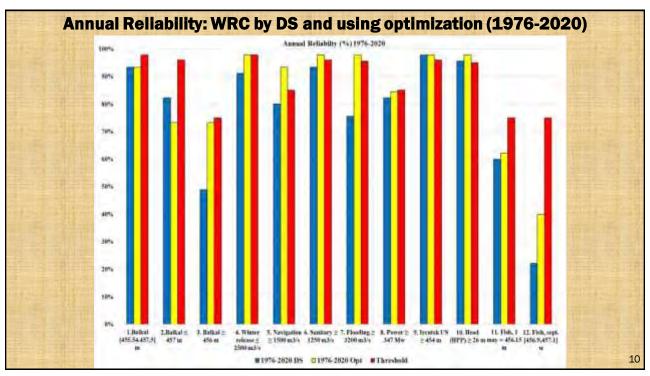

4. Integral indicators of reliability are proposed.

5. Development of release rules for managing water resources in real time based on optimization methods.


6. Practical justification of the proposed release rules based on optimization methods.





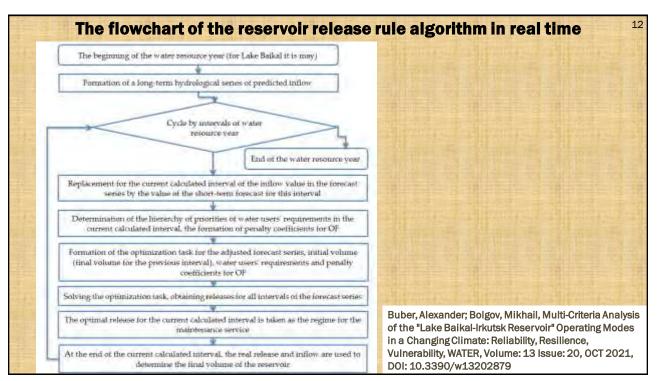


Water users' requirements form 12 criteria 1. The Lake Baikal level should be in range (455.54, 457.5) m; 2. The Lake Baikal level should be ≥456 m, [25]; 3. The Lake Baikal level should be ≤457 m, [25]; 4. The maximum release in winter should be less than 2500 m³/s; 5. The transport release during navigation should be more than 1500 m³/s; 6. The release for water supply should be in range of (1250, 1300) m³/s; 7. Flood control release should be less than 3200 m³/s; 8. Guaranteed winter power should be more than 347 MW; 9. The Irkutsk reservoir upstream level for water intakes operation should be more than 454 m; 10. The pressure on the dam for HPP operation should be more than 26 m; 11. The Lake Baikal level on May 1 for normal fish spawning should be 456.15 m; 12. The Lake Baikal level during September for normal fish spawning should be 457 m.

Statistical analysis of the water resources management quality

The Integrated normalized reliability index (INRI) is defined as the sum of failure for all criteria, divided by the number of years in the time series. It is determined by the formula:

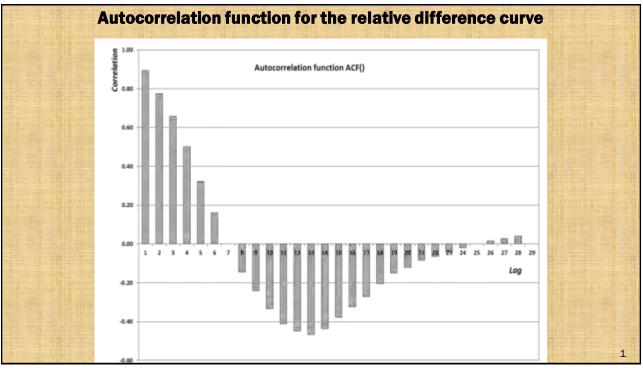
INRI = $\sum_{k=[1,K]} (1 - \text{Reliability}^k[X])$

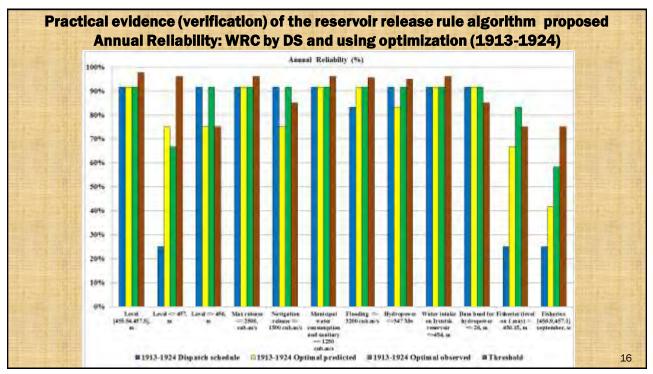

Reliability^k[X] is the reliability (in fractions) for the kth criterion, K is the number of criteria.

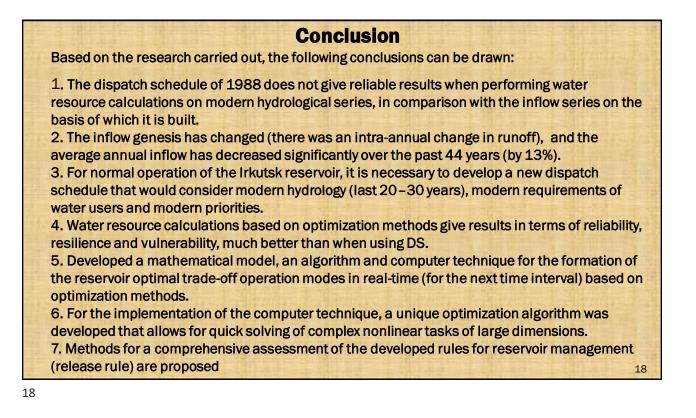
Normative reliability **T**_{INRI} is threshold for **INRI** :

$$\mathbf{T}_{\mathsf{INRI}} = \sum_{k=[\mathbf{1},K]} (\mathbf{1} - \mathbf{T}^k)$$

T^k is the normative security for the kth criterion expressed in fractions


Time Series of Inflow	WRC Using DS	WRC Using Optimization	Improvement%		
1932-1976	1.96	1.53	22%		
1976-2020	2.78	1.91	31%		
2020-2064 average	1.98	1.33	33%		
2020-2064 low water	2.80	1.47	48%		
T _{INRI}	1.33	1.33	11		


Years,	Time interval						1. An 11-year array α in the initial hydrological series P is allocated, the final year of
NN T+1	1 a _{inti} .Qrdi	2		j aQr-ij	j#1 Baggi Qrays	m	which is the year T of the P series, and the initial year is the year T-10, respectively.
T				-			2. We find the 11-year array β in the initial hydrological series P close to the 11-year-
			α				old array α ($\alpha \cong \beta$) in the accepted measure. At the same time, the last year τ in the array β must satisfy the condition T-10> τ (the arrays α and β are assumed to be disjoint). The
T-10	-					-	proximity measure can be determined by the formula:
			γ				$\ \alpha - \beta\ = \sum_{r \in A(i)} \sum_{r \in L(a)} nbs(\mathbf{a}_{r,q} - \mathbf{a}_{r,q});$ where $\mathbf{a}_{r,q}$ is the inflow in the vear τ and the interval j (Figure 1).
T				a _{id} , Qui			3. Let γ be the array the array separating α and β (see figure 1). The number of years
1-1	_		β	a., Q.,			$ \begin{array}{l} T_{\gamma} \mbox{ in the array } \gamma \mbox{ obviously satisfies the condition } T_{\gamma} \geq 0 \mbox{ due to the disjointness of } \alpha \mbox{ and } \beta. \\ Thus, the hydrological series P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \gamma + \beta + \delta\}$ (Figure 1), where P is divided into 4 arrays: $P = \{\alpha + \beta + \delta\}$ (Figure 1), where $P = \{\alpha + \beta + \delta\}$ (Figure 1), where $P = \{\alpha + \beta + \delta\}$ (Figure 1), where $P = \{\alpha + \beta + \delta\}$ (Figure 1), where $P = \{\alpha + \beta + \delta\}$ (Figure 1), where $P = \{\alpha + \beta + \delta\}$ (Figure 1), where $P = \{\alpha + \beta +$
1-10	-	-		-		-	the array δ is the set of remaining years below τ -10.
			δ				in the second
1							


	Years,		Time interval						
	NN	1	2		j	j+1	m		
				α					
P1	1			γ					
51	T+1	a., QI+1.1		1.1	a,, Q1+14	a,+1,p1,Q1+1,p1			
					2.590.98 7 0.920.999	d, beginning in the o des based on optimiz			

Statistical analysis by INRI of the q	ualityof the reservoir release rule algorithm proposed
WRC type and Time Series of Inflow	Integrated normalized reliability index (INRI)
1913-1924 Dispatch schedule	3.08
1913-1924 Optimal by predicted	2.33
1913-1924 Optimal by observed	1.67
T _{INRI}	1.33
	ELDER LITER LITER LITER L
	17

